Summary

hypothetical prevalence: 15 %

$$p = 0.00123$$

hypothetical prevalence: 30 %

$$p = 0.754$$

hypothetical prevalence: 20 %

$$p = 0.0683$$

hypothetical prevalence: 35 %

$$p = 0.17$$

hypothetical prevalence: 25 %

$$p = 0.555$$

hypothetical prevalence: 40 %

$$p = 0.0169$$

number HIV+

$$p = 0.754$$

hypothetical prevalence: 20 %

$$p = 0.0683$$

hypothetical prevalence: 35 %

$$p = 0.17$$

hypothetical prevalence: 25 %

$$p = 0.555$$

Which prevalence gives the greatest probability of observing exactly 28/100?

Which of these prevalence values is most likely given our data?

Building Confidence Intervals Likelihood Ratio Test

Building Confidence Intervals Likelihood Ratio Test

hypothetical prevalence

Building Confidence Intervals Likelihood Ratio Test

Summary

- P-values use cumulative probabilities from PDFs
- Likelihood is conditional on data, looking at probabilities from different PDFs, with varying parameters
- Confidence intervals are the collection of nonrejectable null hypotheses
- MLE methods use Likelihood Ratio Tests to create confidence intervals

