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Measles data
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I Reconstruct the
number of susceptibles

I Divide the data into
generations

I Fit R0

I Predict



Why did I get the wrong answer?
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Why did I get the wrong answer?

I Model structure may be wrong
I Population structure may be wrong
I Stochasticity in disease observation and recording
I Stochasticity in transmission
I Multi-parameter estimation

I Generation intervals
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Conceptual framework

I How do we assume our data relate to our model world?
I No error: We could attempt to model everything we see, in

exact detail
I Observation error: we could assume that the world is

perfectly deterministic, but our observations are imperfect
I Process error: we could assume that we observe perfectly,

but that the world is stochastic
I Both kinds of error: the world is stochastic, and our

observations are imperfect



No error

I Impossible
I Even if possible, not clear what we would learn



Observation error only

I Point your model at the
target

I Give it starting
conditions and
parameters

I Let it go
I Compare final results to

observations

Shooting



Shooting
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Process error only

I Look at each step
separately.

I See how the model is
doing for that step.

I Reset based on
observed data before
taking the next step

Stepping



Stepping
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Stepping
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Stepping
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Comparing approaches
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Observation and process error
I Latent variable models

I We need to keep track of, and integrate over, things that we
don’t observe
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How to fit?

I Solving an equation
I By eye (fiddling with parameters)
I Minimizing a distance function
I Likelihood



Distance functions

D =
∑

i

yi − ŷi



Distance functions

D =
∑

i

|yi − ŷi |



Distance functions

D =
∑

i

(yi − ŷi)
2
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Likelihoods

I Assume that the difference between the estimate ŷi and
the data point yi is normally distributed. What is the log
likelihood?

I

L =
∏

i

1
σ
√

2π
exp

(
−(ŷi − yi)

2

2σ2

)
I

` =
∑

i

− log(σ
√

2π)−
∑

i

(ŷi − yi)
2

2σ2

I We minimize the likelihood by minimizing the sum of
squares

I and then solving for σ



Least squares→ likelihood

I Attaching your least squares fit to a likelihood means:
I You can use it for statistical inference (LRT)
I You can challenge the assumptions



Mexican flu example
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I How fast is it growing? r
I How hard will it be to

control? R0



A different perspective
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I We could make the
normal assumption on
either scale

I How much does it
matter?



Normal assumption
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I Least squares on the
linear scale

I 10:50 :: 980:1020
I Gives relatively too

much weight to large
observations
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Lognormal assumption
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I Least squares on the
log scale

I 3:5 :: 300:500
I Gives relatively too

much weight to small
observations
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A more realistic error distribution

I My case counts are individuals
I What distributions can I use to reflect that?
I WRONG!
I Sorry:

I OK, technically it’s right, but you shouldn’t do it.



Reality is complicated

I Poisson and binomial
reflect only
individual-level variation

I No temporal variation
I No clustered

sampling
I . . .



Distribution diagram



Negative binomial fits
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Comparison

I Realistic error distribution provides (apparently) better fits
I Confidence intervals

I Normal: r = 0.96–0.97/wk
I Lognormal: r = 0.64–1.29/wk
I Negative binomial: r = 0.90–1.14/wk

I How would you test these methods?



Identifiability
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I What if we tried to
estimate R0 from data
like these?
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Modern approaches

I Why are people using model worlds with no observation
error?

I or no process error?
I Sometimes they are good enough (model validation)
I Combining both is hard



Filtering

I Filtering is a little like shooting
I Simulate from beginning to end, but use stochastic

simulations
I You need a lot of simulations, and often ways of selecting

and refining them
I A popular, state-of-the-art method is implemented in the R

package pomp



Latent variable methods

I Latent variable methods are a little like stepping
I But we step to and from unknown values (our latent

variables), so we need a way of exploring many possibilities
I Popular, state-of-the-art methods are available in the R

packages rjags and rstan



Multi-parameter inference

I Modern methods are already hard, and when you consider
various sources of uncertainty, you’re really on the
bleeding edge

I Many high-profile models for Ebola, for example failed to
consider process error.

I The biggest paper talking about process error neglected
uncertainty in generation intervals

I Once you do multi-parameter inference, you may find that
confidence intervals are very large – this may reflect the
reality of knowledge, but may not make you look good



Assessing and reporting uncertainty
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Assessing and reporting uncertainty
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Assessing and reporting uncertainty
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Assessing and reporting uncertainty
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Likelihood

I Maximum likelihood and likelihood are not the same thing
I Bayesian approaches and frequentist approaches

(including maximum likelihood) both depend on calculating
(or approximating) likelihood



Frequentist inference

I To do frequentist inference on these complicated
likelihoods, we need to:

I estimate likelihoods
I find the maximum likelihood
I use the likelihood ratio test to find confidence intervals

I This is hard



Bayesian inference

I To do Bayesian inference on these complicated likelihoods,
we need to:

I construct prior distributions
I estimate likelihoods
I estimate the posterior

I Also hard, but sometimes easier than the frequentist
approach
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