Thinking about databases

Travis C. Porco

Francis I. Proctor Foundation

June 8, 2016

- Relational databases, and the common operations on them, form a useful abstraction of common patterns.
- Relational databases aren't the only type of database, but they are common, clear, and give us a vocabulary for talking about how to organize our data.
- Experience suggests most of your time analyzing data is spent organizing, cleaning, and manipulating data.
- A little knowledge is a good thing!

Data on patients by age, drug treatment, and visual acuity status:

$Patient_ID$	Age	Natamycin	VA_3M
1	38	0	0.02
2	37	0	0.26
3	36	1	0.48
4	66	1	0.7
5	73	1	0.48
6	24	0	0
7	66	0	0.34
8	68	1	0.4
9	41	0	0.18
10	56	1	0.5

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- Here, the data are organized by rows (subjects).
- Each column (attribute) is a variable measured on a subject.

Another example: data on patients, by eye, visit time, and region within eye; each region is graded by different people.

$Patient_ID$	Eye	Visit	ROI	Grader	Outcome
1	Right	1	I_1	А	1.4
1	Right	1	I_1	В	1.3
1	Right	1	I_2	А	1.1
1	Right	2	I_{-1}	А	1.5
1	Right	2	I_1	В	1.4
1	Left	1	LL_1	А	1.1
2	Right	1	I_1	А	1.2
2	Right	1	I_1	С	1.8

- The values of some column, or combination of columns, serve to uniquely identify each unique subject or observation.
- If there are columns in a table that no two rows can share, those columns comprise a *superkey*.
- If you cannot delete any columns without losing this uniqueness, then the columns comprise a *key*.

In this table, each row corresponds to a patient. The key consists of a single column.

$Patient_ID$	Age	Natamycin	VA_3M
1	38	0	0.02
2	37	0	0.26
3	36	1	0.48
4	66	1	0.7
5	73	1	0.48
6	24	0	0
7	66	0	0.34
8	68	1	0.4
9	41	0	0.18
10	56	1	0.5

Here, it takes five columns to fully specify the key.

Patient_ID	Eye	Visit	ROI	Grader	Outcome
1	Right	1	I_1	А	1.4
1	Right	1	I_1	В	1.3
1	Right	1	I_2	А	1.1
1	Right	2	I_1	А	1.5
1	Right	2	I_1	В	1.4
1	Left	1	LL_1	А	1.1
2	Right	1	I_{-1}	А	1.2
2	Right	1	I_{-1}	С	1.8

____ ▶

• Whether columns comprise a key or not does not depend on the specific data you have at any given time; it has to be true of all possible tables you could have. • A table represents a general functional relationship between the key and various attributes or variables.

You are familiar with an identity matrix, such as this one in 3 dimensions:

$$I = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Example

This same information can be represented as a relational database, as a functional dependence between the row and column indices, and the entry.

i	j	I _{ij}
1	1	1
1	2	0
1	3	0
2	1	0
2	2	1
2	3	0
3	1	0
3	2	0
3	3	1

- A matrix does not have to be represented in the usual two dimensional layout you see in math books.
- This different tabular representation expresses a matrix as a function of its indices.

- But a relational database can represent higher order objects just as easily.
- The two dimensionality of a relational database table reflects the mapping of the arguments of a function to its values.

Here is an interesting one:

i	j	k	a _{ijk}
1	1	1	0
1	1	2	1/4
1	2	1	1/4
1	2	2	0
2	1	1	1/4
2	1	2	0
2	2	1	0
2	2	2	1/4

▲圖 ▶ ▲ 圖 ▶

Э

Here is the same information, represented in a different order:

i	j	k	a _{ijk}
1	1	1	0
1	2	2	0
2	1	2	0
2	2	1	0
1	1	2	1/4
1	2	1	1/4
2	1	1	1/4
2	2	2	1/4

- 4 聞 と 4 臣 と 4 臣 と

- Each cell contains one and only one value.
- The order of the rows does not matter.
- The order of the columns does not matter.
- There are no duplicate rows.

Here is an example data table, keyed by patient. We record the outcome and the medications the person was taking.

$Patient_ID$	Outcome	Medications
10010	0	AB
10011	1	AB,CD
10020	1	CD
10013	0	CD,AB
10014	1	CD, AB
10015	1	
10016	0	CD
10041	1	AB CD

After we at least canonicalize the representation of multiple drugs...

$Patient_ID$	Outcome	Medications
10010	0	AB
10011	1	AB,CD
10020	1	CD
10013	0	AB,CD
10014	1	AB,CD
10015	1	
10016	0	CD
10041	1	AB,CD

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

э

- We want to analyze medications, but all the medications together are stuffed into a single cell.
- If we are interested in a given medication, we have to break apart the possible values in the cell to find out what we want to know. (The values are not *atomic* with respect to what we want to do.)
- Therefore the table is irritating to maintain and query.
- It is hard to tell missing records from the absence of medication use.

This is somewhat better. Still, we might need to anticipate the need for extra columns (such as medication EF).

$Patient_ID$	Outcome	AB	CD	EF
10010	0	0	0	0
10011	1	1	1	0
10020	1	1	1	0
10013	0	0	1	0
10014	1	1	1	0
10015	1	0	0	0
10016	0	0	1	0
10041	1	1	1	0

□ > < = > <

Better still might be to represent the relation between patient and medication by its own table:

$Patient_ID$	Medication
10010	AB
10011	AB
10011	CD
10020	CD
10013	AB
10013	CD
10014	AB
10014	CD
10016	CD
10041	AB
10041	CD

- We eliminated many-to-one relationships in the table, removing the need for complicated cell values.
- Two simple tables replace one cumbersome table.

- Do not make columns do the work of rows.
- Complications and obscurities in columns make for complicated programs.
- Changes to columns can change your analysis script.

Patient	Time	Acuity	Time	Acuity	Time	Acuity
1	0	0.8	18	0.9	21	0.9
2	18	0.25				
3	0	CF	7	1.3	21	1.3

・ロト ・回ト ・ヨト ・ヨト

æ

- Column names not unique; crucial information encoded in the ordering of columns.
- Need to add extra columns if you have extra observations
- Lots of missing data fields for patents that have fewer observations
- Many columns represent the same thing, such as time

Patient	Time	Acuity
1	0	0.8
1	18	0.9
1	21	0.9
2	18	0.25
3	0	CF
3	7	1.3
3	21	1.3

・ロト ・部ト ・ヨト ・ヨ

æ

Exper1-time	Exper1-temp	Exper2-time	Exper2-temp
0	24	0	10
1	26	3	14
2	28	5	12
3	27	NA	NA

æ

合 ▶ ◀

- Here, the rows don't represent anything coherent. Each row is just the second observation of unrelated experiments.
- As before, similar things (time) are located in different columns.
- Missing values for some experiments due simply to the differing numbers of observations

Exper	Time	Temp
1	0	24
1	1	26
1	2	28
1	3	27
2	0	10
2	3	14
2	5	12

・ロト ・聞ト ・ヨト ・ヨト

æ

The key for this table is *Patient* and *Time*.

Patient	Time	VA	Gender
1	21	0.1	m
1	93	0	m
2	20	0.8	f
3	21	0	m
3	90	0	m
4	90	0	f

- **→** → **→**

- The gender information for each patient is needlessly duplicated—if you learn that patient 1 was gender f, you will have to change it in two places.
- A simple query, such has *how many women are there?* is complicated by the fact that some people are counted more than once.
- Here, the attribute (variable) *Gender* depends on *Patient* only, if we assume that *Gender* does not change over time.

Remove the *partial key dependence* using a second table for gender, keeping VA in a table keyed by *Patient* and *Time*. Here is the new table:

Patient	Gender
2	f
3	m
4	f
1	m

The key for this table is *Patient* and *Time*.

Patient	Time	Logmar VA	Snellen
1	21	0.1	20/30
1	93	0	20/20
2	20	0.8	20/130
3	21	0	20/20
3	90	0	20/20
4	90	0	20/20

(Logmar and Snellen are two different ways to measure the same thing; they are essentially interconvertible.)

- Now, Snellen acuity is derived from Logmar acuity.
- If Logmar were the primary measurement, it would depend on the key; there is an acuity measurement for each patient at each time.
- But once you know the Logmar value, you know the Snellen value—no matter what the key is.
- This is a *transitive dependency* and is a different type of redundancy.
- Now, if you determine that a logMAR acuity is wrong, you must remember to change the Snellen also.
- Better to have a separate lookup table or formula.

If you *know* that each medication is made by only one manufacturer, then this table has a transitive dependency:

Patient	Medication	Manufacturer
1	Azithromycin	Pfizer
1	Erythromycin	Lilly
2	Azithromycin	Pfizer
3	Moxifloxacin	Bayer
4	Erythromycin	Lilly
4	Moxifloxacin	Bayer

Have a table keyed by *Patient* and *Medication*. Notice this table is "all key" now.

Patient	Medication			
1	Azithromycin			
1	Erythromycin			
2	Azithromycin			
3	Moxifloxacin			
4	Erythromycin			
4	Moxifloxacin			

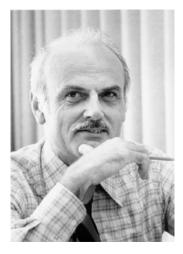
甩

э

/⊒ > < ∃ >

...and a second table keyed by *Medication*, containing the manufacturer information:

Medication	Manufacturer
Azithromycin	Pfizer
Erythromycin	Lilly
Moxifloxacin	Bayer


- ● ● ●

э

- No repeating groups
- No partial key dependencies
- No transitive dependencies

Columns that are not part of any possible key should depend on the key, the whole key, and nothing but the key...

So help you Codd

⊡ ► < ≣ ►

- [] Brackets serve for both subsets of rows, and subsets of columns
- merge Selecting elements from one table to put into another
 (table join)
- ddply From the plyr package
 - cast From reshape2 package
 - melt From reshape2 package

- Be pragmatic
- Know your tools—goal is get the job done correctly, on time, within budget
- Not trying to win a programming contest
- Clear, simple, documented, maintainable
- A simple clear program you can write correctly and maintain is better than a clever trick.
- "Do not be clever. Clever kills." Steve Oualline, *Practical C Programming*
- PERL motto: There's More Than One Way To Do It (TMTOWTDI).
- Sometimes the latest new thing is great and sometimes it isn't.

- Use the bracket operator to select rows from a table, based on a boolean variable for each row.
- Normally you would just have a data frame imported from somewhere. Just as an example, suppose we had a toy data frame:

ds1 <- data.frame(patid=1:5,gender=c("m","f","f","f","m"))</pre>

• Select rows corresponding to female gender:

```
ds1[ds$gender=="f",]
```

%in%

Travis C. Porco Thinking about databases

æ

		p[lep\$di	strict %:	in% c("Ch	ittor","Cudo	dapah","Ad	dilabad"),]	
> ×m	ip							
					population			
1	Andhra	Pradesh	1	Adilabad	2713960	542	337	2008
3	Andhra	Pradesh	3	Chittor	4088653	404	254	2008
4	Andhra	Pradesh	4	Cuddapah	2817001	364	233	2008
615	ANDHRA	PRADESH	1	Adilabad	2749241	492	255	2009
617	ANDHRA	PRADESH	3	Chittor	4141805	495	271	2009
618	ANDHRA	PRADESH	4	Cuddapah	2853622	310	172	2009
1241	ANDHRA	PRADESH	1	Adilabad	2784982	402	208	2010
1243	ANDHRA	PRADESH	3	Chittor	4195649	457	250	2010
1244	ANDHRA	PRADESH	4	Cuddapah	2890719	311	174	2010
1857	ANDHRA	PRADESH	1	Adilabad	2737738	346	177	2011
1859	ANDHRA	PRADESH	3	Chittor	4170468	342	192	2011
1860	ANDHRA	PRADESH	4	Cuddapah	2884524	251	138	2011
2446	ANDHRA	PRADESH	1	Adilabad	2766758	281	188	2012
2448	ANDHRA	PRADESH	3	Chittor	4214675	356	229	2012
2449	ANDHRA	PRADESH	4	Cuddapah	2915100	177	108	2012
3036	ANDHRA	PRADESH	1	Adilabad	2796086	371	247	2013
3038	ANDHRA	PRADESH	3	Chittor	4259351	336	206	2013
3039	ANDHRA	PRADESH	4	Cuddapah	2946000	204	127	2013

・ロト ・日下・ ・日下

æ

Э

Note the previous example had the state information in a noncanonicalized form: the same information is represented in two different ways (capitalized versus not).

- ds2 <- data.frame(patid=c(1,3,2,5),va.3m=c(0,0.6,0.2,0.8))
- merge(ds1,ds2,by="patid",all.x=TRUE)

→ ∢ ≣ →

Notes

- If you work with multiple smaller normalized tables, this is a common operation prior to analysis.
- A common error is to omit the all.x=TRUE clause, and wonder where some of your records went.
- Another common error is to merge without making sure that the values of the common variable are actually the same—an identifier might be a string in one table, but a factor in another.
- Duplicate names are resolved by suffixes, which you can choose.

- ddply is used to break up a table into small data frames based on unique combinations of values of a set of variables (columns), perform an operation on them, and reassemble the results.
- Examples could include picking out baseline measurements, plotting different subsets of data in different colors, taking the difference between cases and controls, and many others.

- melt and cast are used in reshaping tables (long to wide form), and similar common tasks.
- From the reshape2 package

- Oppel, A. Databases DeMYSTiFieD, 2d ed. 2011, McGraw-Hill.
- Date CJ, Introduction to Database Systems, 8th Ed, 2004, Addison Wesley.