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Ordinary Differential Equations (ODEs) 
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Ordinary Differential Equations (ODEs) 

¨  Describe change in state variables through time 
¤ deterministic progression from set of initial conditions 

¨  Good for: 
¤ understanding periodicity in long time series for   

large populations 
¤ understanding effects of vaccination and birth rates 

on persistence and periodicity 



Characteristics: 
A.  Continuous treatment of individuals 
B.  Continuous treatment of time 
C.  Assumptions: 

1.  large (infinite) populations 
2.  well-mixed contacts 
3.  homogeneous individuals 
4.  exponential waiting times (memory-less) 

Ordinary Differential Equations (ODEs) 
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¨  appropriate for: 
¤ population proportions 
¤ population densities 
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Characteristics: 
A.  Continuous treatment of individuals 
B.  Continuous treatment of time 
C.  Assumptions: 

1.  large (infinite) populations 
2.  well-mixed contacts 
3.  homogeneous individuals 
4.  exponential waiting times (memory-less) 

Ordinary Differential Equations (ODEs) 
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¨  Treatment of time as discrete steps 
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B. Continuous (v. Discrete) Treatment of Time 

¨  N = population size or density 

¨  t = time 

¨  Δ denotes “change in” 

¨  b =  per capita birth rate (units = time-1) 

¨  b*N = total birth rate (units = indiv/time) 

¨  d = per capita death rate (units = time-1) 

¨  d*N = the total death rate (units =indiv/time) 
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¨  Treatment of time as discrete steps 

ΔN
Δ t

= bN − d N

d N
d t

= bN − d N
N 

db

¨  N = population size or density 

¨  t = time 

¨  Δ denotes “change in” 

¨  b =  per capita birth rate (units = time-1) 

¨  b*N = total birth rate (units = indiv/time) 

¨  d = per capita death rate (units = time-1) 

¨  d*N = the total death rate (units =indiv/time) 

B. Continuous (v. Discrete) Treatment of Time 
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¨  r is called the “intrinsic population growth rate” 
¨  r is like R0, but by convention, we think about it 

as b-d instead of b/d, so: 
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¨  r is called the “intrinsic population growth rate” 
¨  r is like R0, but by convention, we think about it 

as b-d instead of b/d, so: 
¨  if r>0, N increases with time 
¨  if r<0, N decreases with time 
¨  if r=0, then N is constant 
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B. Continuous (v. Discrete) Treatment of Time 

ΔN = r NΔ t



¨  At r>0, population 
grows exponentially 

B. Continuous (v. Discrete) Treatment of Time 

0 5 10 15 20

0e
+0
0

4e
+0
8

8e
+0
8

in
di
vi
du
al
s

days

ΔN = r NΔ t
Δt = 1 day  
r = 2 day-1 
 



¨  At r>0, population 
grows exponentially 

¨  But at smallerΔt, 
exponential growth 
is faster  

B. Continuous (v. Discrete) Treatment of Time 

0 5 10 15 20

0e
+0
0

4e
+0
8

8e
+0
8

in
di
vi
du
al
s

days

ΔN = r NΔ t
Δt = 1 day 
r = 2 day-1 
 



0 5 10 15 20

0e
+0
0

4e
+0
8

8e
+0
8

in
di
vi
du
al
s

days

¨  At r>0, population 
grows exponentially 

¨  But at smallerΔt, 
exponential growth 
is faster. Why?  

B. Continuous (v. Discrete) Treatment of Time 

ΔN = r NΔ t
Δt = 1 day 
Δt = 1/2 day   
r = 2 day-1 
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¨  At r>0, population 
grows exponentially 

¨  But at smallerΔt, 
exponential growth 
is faster. Why?  

¨  We can have 
equivalent per 
capita growth rates 
but higher 
population level 
growth! 

B. Continuous (v. Discrete) Treatment of Time 

ΔN = r NΔ t
Δt = 1 day 
Δt = 1/2 day   
r = 2 day-1 
 



¨  Continuous time offers the smallest Δt of all: 

B. Continuous (v. Discrete) Treatment of Time 

dN
dt
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Δ t Nt =N0e
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B. Continuous (v. Discrete) Treatment of Time 
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Nt =N0e
rt¨  Treatment of time 

affects population-
level growth 

¨  Must think carefully 
about parameters 

¨   λ = e rΔt 

¨  Sometimes, 
discrete time may 
be more 
appropriate than 
continuous! 



Characteristics: 
A.  Continuous treatment of individuals 
B.  Continuous treatment of time 
C.  Assumptions: 

1.  large (infinite) populations 
2.  well-mixed contacts 
3.  homogeneous individuals 
4.  exponential waiting times (memory-less) 

Ordinary Differential Equations (ODEs) 
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I R S 
β SI
N

γ I

When N is large (infinite), stochastic fadeout and 
demographic stochasticity do not occur 



Assumptions: (1) Large populations 

¨  average system behavior 
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¨  average system behavior 
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As the population size gets large, these curves begin to 
look more like the average behavior of  the system (left) 



Assumptions: (1) Large populations 

Continuous Time Markov Chain (CTMC) 

Ordinary Differential Equation (ODE) 

¨  average system behavior 
 I R S 

(Rebecca Borchering 2016) 
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4.  exponential waiting times (memory-less) 

Ordinary Differential Equations (ODEs) 
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Assumptions: (2) well-mixed contacts 

¨  Often not true! 
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 R0 ==
β
γ

If (1/γ) = Δt for a 
discrete time model 

and we rescale 
time to the same 

units:  

 R0 = βtime-1*Δt 



Characteristics: 
A.  Continuous treatment of individuals 
B.  Continuous treatment of time 
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3.  homogeneous individuals 
4.  exponential waiting times (memory-less) 

Ordinary Differential Equations (ODEs) 
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Assumptions: (3) homogeneous individuals 
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(ODE assumes every infected equally 
likely to transmit and every susceptible 

equally likely to become infected) 



¨  Also often not true! 
¨  Heterogeneity in ρ

¤  Immunocompromised individuals 
¤ Superspreaders 
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For a simple model, the 
population currently or 
previously infected at 
equilibrium = 1-1/R0 

But heterogeneity alters 
this relationship! 
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For a simple model, the 
population currently or 
previously infected at 
equilibrium = 1-1/R0 

But heterogeneity alters 
this relationship! 

R0 

¨  Also often not true! 
¨  Heterogeneity in ρ

¤  Immunocompromised individuals 
¤  Superspreaders 

¨  Heterogeneity in other parameters 
¤  i.e. duration of infection 
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Characteristics: 
A.  Continuous treatment of individuals 
B.  Continuous treatment of time 
C.  Assumptions: 

1.  large (infinite) populations 
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4.  exponential waiting times (memory-less) 

Ordinary Differential Equations (ODEs) 
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Assumptions: (4) exponential waiting times 

¨  In a simple ODE, the ‘waiting time’ for these 
events to occur (infection, incubation, recovery, 
death) is memoryless, meaning the distribution of 
the waiting time at time t25 is the same as at t0.  
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¨  In a simple ODE, the ‘waiting time’ for these 
events to occur (infection, incubation, recovery, 
death) is memoryless, meaning the distribution of 
the waiting time at time t25 is the same as at t0.  

¨  This means that your exit rate does not change, 
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Assumptions: (4) exponential waiting times 

¨  In a simple ODE, the ‘waiting time’ for these 
events to occur (infection, incubation, recovery, 
death) is memoryless, meaning the distribution of 
the waiting time at time t25 is the same as at t0.  

¨  This means that your exit rate does not change, 
regardless of how long you’ve been in each box 

¨  This is often not true! 
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¨  In a simple survival ODE, the ‘waiting time’ for 
death to occur is memoryless, meaning that the 
probability is no different at t0, t25, or t75 



Assumptions: (4) exponential waiting times 

N 
µ

Exponential survival: 

¨  In a simple survival ODE, the ‘waiting time’ for 
death to occur is memoryless, meaning that the 
probability is no different at t0, t25, or t75 

Nt =N0e
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Assumptions: (4) exponential waiting times 

N 
µ

Exponential survival: 

¨  In a simple survival ODE, the ‘waiting time’ for 
death to occur is memoryless, meaning that the 
probability is no different at t0, t25, or t75 
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¨  Compartmental models 
¨  Network models 
¨  Individual-based models 

¨  Continuous time 
¨  Discrete time 

¨  Deterministic 
¨  Stochastic 

¨  Continuous treatment  
   of individuals 
 



Characteristics: 
A.  Continuous treatment of individuals 
B.  Continuous treatment of time 
C.  Assumptions: 

1.  large (infinite) populations 
2.  well-mixed contacts 
3.  homogenous individuals 
4.  exponential waiting times (memory-less) 

Ordinary Differential Equations (ODEs) 


