

(Hidden) Assumptions of Simple ODE Models

Cara Brook Department of Ecology and Evolutionary Biology Princeton University

Juliet Pulliam, PhD Department of Biology and Emerging Pathogens Institute University of Florida

Model terminology

\square Compartmental models

Model terminology

- Compartmental models
- Network models

Model terminology

- Compartmental models
- Network models
- Individual-based models

Model terminology

- Compartmental models
- Network models
- Individual-based models
- Continuous time
- Discrete time
\square Deterministic
\square Stochastic

Ordinary Differential Equations (ODEs)

\square Compartmental models

- Network models
- Individual-based models
\square Continuous time
- Discrete time
\square Continuous treatment of individuals
\square Deterministic
\square Stochastic

Ordinary Differential Equations (ODEs)

\square Describe change in state variables through time

Ordinary Differential Equations (ODEs)

\square Describe change in state variables through time a deterministic progression from set of initial conditions

Ordinary Differential Equations (ODEs)

\square Describe change in state variables through time a deterministic progression from set of initial conditions

Good for:

- understanding periodicity in long time series for large populations
a understanding effects of vaccination and birth rates on persistence and periodicity

Ordinary Differential Equations (ODEs)

Characteristics:
A. Continuous treatment of individuals
B. Continuous treatment of time
c. Assumptions:

1. large (infinite) populations
2. well-mixed contacts
3. homogeneous individuals
4. exponential waiting times (memory-less)

Ordinary Differential Equations (ODEs)

Characteristics:
A. Continuous treatment of individuals
B. Continuous treatment of time
c. Assumptions:

1. large (infinite) populations
2. well-mixed contacts
3. homogeneous individuals
4. exponential waiting times (memory-less)

A. Continuous Treatment of Individuals

- appropriate for:
a population proportions
apopulation densities

A. Continuous Treatment of Individuals

- appropriate for:
a population proportions
apopulation densities

Time

A. Continuous Treatment of Individuals

- appropriate for:
a population proportions
- population densities

A. Continuous Treatment of Individuals

- appropriate for:
a population proportions
- population densities

A. Continuous Treatment of Individuals

- appropriate for:
a population proportions
- population densities

A. Continuous Treatment of Individuals

- appropriate for:
a population proportions - population densities

Ordinary Differential Equations (ODEs)

Characteristics:
A. Continuous treatment of individuals
в. Continuous treatment of time
c. Assumptions:

1. large (infinite) populations
2. well-mixed contacts
3. homogeneous individuals
4. exponential waiting times (memory-less)

B. Continuous (v. Discrete) Treatment of Time

- Continuous treatment of time
$d N$

$$
=b N-d N
$$

$d t$
\square Treatment of time as discrete steps
ΔN
$=b N-d N$
Δt

- $\mathrm{N}=$ population size or density
- † = time
- Δ denotes "change in"
- $b=$ per capita birth rate (units $=$ time $^{-1}$)
- b*N = total birth rate (units = indiv/time)
- $d=$ per capita death rate (units $=$ time $^{-1}$)
d*N = the total death rate (units =indiv/time)

B. Continuous (v. Discrete) Treatment of Time

- Continuous treatment of time

$$
\frac{d N}{d t}=b N-d N
$$

- Treatment of time as discrete steps
- $N=$ population size or density
$=b N-d N$
- $\dagger=$ time
- Δ denotes "change in"
- $b=$ per capita birth rate (units $=$ time $^{-1}$)
- b*N = total birth rate (units = indiv/time)
- $d=$ per capita death rate (units $=$ time $^{-1}$)
d*N = the total death rate (units =indiv/time)
B. Continuous (v. Discrete) Treatment of Time

$$
\frac{\Delta N}{\Lambda+}=b N-d N \quad \square \quad \Delta N=r N \Delta t
$$

B. Continuous (v. Discrete) Treatment of Time

$$
\frac{\Delta N}{\Delta t}=b N-d N \quad \square \Delta N=r N \Delta t
$$

$\square r$ is called the "intrinsic population growth rate"

B. Continuous (v. Discrete) Treatment of Time

ΔN

$$
\Delta N=r N \Delta t
$$

$\square r$ is called the "intrinsic population growth rate"
$\square r$ is like RO, but by convention, we think about it as b-d instead of b/d, so:

B. Continuous (v. Discrete) Treatment of Time

ΔN

$\square r$ is called the "intrinsic population growth rate"

- r is like RO, but by convention, we think about it as $b-d$ instead of b / d, so:
\square if $r>0, N$ increases with time
\square if $r<0, N$ decreases with time
\square if $r=0$, then \mathbf{N} is constant

B. Continuous (v. Discrete) Treatment of Time

\square A \dagger r>0, population
$\Delta N=r N \Delta t$ grows exponentially

B. Continuous (v. Discrete) Treatment of Time

\square At r>0, population grows exponentially

$\Delta N=r N \Delta t$

- But at smaller Δt, exponential growth

B. Continuous (v. Discrete) Treatment of Time

- Atr>0, population grows exponentially

$\Delta N=r N \Delta t$

- But at smaller Δt, exponential growth is faster. Why?

B. Continuous (v. Discrete) Treatment of Time

- At r>0, population grows exponentially

$\Delta N=r N \Delta t$

- But at smaller Δt, exponential growth is faster. Why?
\square We can have equivalent per capita growth rates but higher population level growth!

B. Continuous (v. Discrete) Treatment of Time

- Continuous time offers the smallest Δt of all:

$$
\frac{d N}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta N}{\Delta t} \quad \square \quad N_{t}=N_{0} e^{r t}
$$

B. Continuous (v. Discrete) Treatment of Time

B. Continuous (v. Discrete) Treatment of Time

B. Continuous (v. Discrete) Treatment of Time

- Treatment of time affects populationlevel growth

B. Continuous (v. Discrete) Treatment of Time

- Treatment of time affects populationlevel growth
$N_{t}=N_{0} e^{r t}$
- Must think carefully about parameters

B. Continuous (v. Discrete) Treatment of Time

- Treatment of time affects populationlevel growth
- Must think carefully about parameters
$\square \boldsymbol{\lambda}=e^{r \Delta t}$
$N_{t}=N_{0} e^{r t}$

B. Continuous (v. Discrete) Treatment of Time

- Treatment of time affects populationlevel growth

$$
N_{t}=N_{0} e^{r t}
$$

- Must think carefully
about parameters
- $\boldsymbol{\lambda}=e^{r \Delta t}$
\square Sometimes, discrete time may be more appropriate than continuous!

Ordinary Differential Equations (ODEs)

Characteristics:
A. Continuous treatment of individuals
B. Continuous treatment of time
c. Assumptions:

1. large (infinite) populations
2. well-mixed contacts
3. homogeneous individuals
4. exponential waiting times (memory-less)

Assumptions: (1) Large populations

Assumptions: (1) Large populations

When N is large (infinite), stochastic fadeout and demographic stochasticity do not occur

Assumptions: (1) Large populations

ODE
Stochastic, discrete-time

Assumptions: (1) Large populations

- average system behavior

Time

Time

As the population size gets large, these curves begin to look more like the average behavior of the system (left)

Assumptions: (1) Large populations

\square average system behavior

- Continuous Time Markov Chain (CTMC)
- Ordinary Differential Equation (ODE)
(Rebecca Borchering 2016)

Ordinary Differential Equations (ODEs)

Characteristics:
A. Continuous treatment of individuals
B. Continuous treatment of time
c. Assumptions:

1. large (infinite) populations
2. well-mixed contacts
3. homogeneous individuals
4. exponential waiting times (memory-less)

Assumptions: (2) well-mixed contacts

$$
R_{0}=\frac{\beta}{\gamma}=c * \rho *\left(\frac{1}{\gamma}\right)
$$

$\square R_{0}=$ basic reproduction number
a number of new infections generated by 1 infectious individual in a completely susceptible population

Assumptions: (2) well-mixed contacts

$$
R_{0}=\frac{\beta}{\gamma}=c * \rho *\left(\frac{1}{\gamma}\right)
$$

contact rate
(ODE assumes every
infected equally likely to come in contact with every susceptible)
$\square R_{0}=$ basic reproduction number
a number of new infections generated by 1 infectious individual in a completely susceptible population

Assumptions: (2) well-mixed contacts

$$
R_{0}=\frac{\beta}{\gamma}=c^{*} \rho^{*}\left(\frac{1}{\gamma}\right)
$$

contact rate
(ODE assumes every infected equally likely to come in contact with every susceptible)
probability infection given contact
(ODE assumes every infected equally likely to transmit and every susceptible equally likely to become infected)
$R_{0}=$ basic reproduction number
a number of new infections generated by 1 infectious individual in a completely susceptible population

Assumptions: (2) well-mixed contacts

$$
R_{0}=\frac{\beta}{\gamma}=c^{*} \rho^{*}\left(\frac{1}{\gamma}\right)
$$

\longleftarrow average duration of

 infectioncontact rate
(ODE assumes every infected equally likely to come in contact with every susceptible)
probability infection given contact
(ODE assumes every infected equally likely to transmit and every susceptible equally likely to become infected)
$R_{0}=$ basic reproduction number
a number of new infections generated by 1 infectious individual in a completely susceptible population

Assumptions: (2) well-mixed contacts

\longleftarrow average duration of infection
contact rate
(ODE assumes every infected equally likely to come in contact with every susceptible)
probability infection given contact
(ODE assumes every infected equally likely to transmit and every susceptible equally likely to become infected)
$\mathrm{R}_{0}=$ basic reproduction number
a number of new infections generated by 1 infectious individual in a completely susceptible population

Assumptions: (2) well-mixed contacts

■ Often not true!

(Mossong et al. 2008)

Assumptions: (2) well-mixed contacts

$R_{0}=\frac{\beta}{\gamma}$
 If $(1 / \mathrm{Y})=\Delta t$ for a discrete time model and we rescale time to the same units:
 $\mathbf{R}_{0}=\beta$ time- $1^{*} \Delta \dagger$

Ordinary Differential Equations (ODEs)

Characteristics:
A. Continuous treatment of individuals
B. Continuous treatment of time
c. Assumptions:

1. large (infinite) populations
2. well-mixed contacts
3. homogeneous individuals
4. exponential waiting times (memory-less)

Assumptions: (3) homogeneous individuals

$$
R_{0}=\frac{\beta}{\gamma}=c^{*} \rho_{\substack{\beta \\
\\
\begin{array}{c}
\text { probability infection given contact } \\
\text { (ODE assumes every infected equally } \\
\text { likely to transmit and every susceptible } \\
\text { equally likely to become infected) }
\end{array}}}^{\left(\frac{1}{\gamma}\right)}
$$

Assumptions: (3) homogeneous individuals

- Also often not true!
- Heterogeneity in ρ
almmunocompromised individuals
aSuperspreaders

Assumptions: (3) homogeneous individuals

- Also often not true!
- Heterogeneity in ρ
- Immunocompromised individuals
-Superspreaders

Assumptions: (3) homogeneous individuals

- Also often not true!
- Heterogeneity in ρ
a Immunocompromised individuals
■Superspreaders

For a simple model, the population currently or previously infected at equilibrium $=1-1 / R_{0}$
But heterogeneity alters this relationship!

Assumptions: (3) homogeneous individuals

- Also often not true!
- Heterogeneity in ρ
- Immunocompromised individuals
- Superspreaders
- Heterogeneity in other parameters
a i.e. duration of infection
For a simple model, the population currently or previously infected at equilibrium $=1-1 / R_{0}$
But heterogeneity alters this relationship!

Ordinary Differential Equations (ODEs)

Characteristics:
A. Continuous treatment of individuals
B. Continuous treatment of time
c. Assumptions:

1. large (infinite) populations
2. well-mixed contacts
3. homogeneous individuals
4. exponential waiting times (memory-less)

Assumptions: (4) exponential waiting times

Assumptions: (4) exponential waiting times

- In a simple ODE, the 'waiting time' for these events to occur (infection, incubation, recovery, death is memoryless, meaning the distribution of the waiting time at time t_{25} is the same as at t_{0}.

Assumptions: (4) exponential waiting times

- In a simple ODE, the 'waiting time' for these events to occur (infection, incubation, recovery, death is memoryless, meaning the distribution of the waiting time at time t_{25} is the same as at t_{0}.
\square This means that your exit rate does not change, regardless of how long you've been in each box

Assumptions: (4) exponential waiting times

- In a simple ODE, the 'waiting time' for these events to occur (infection, incubation, recovery, death) is memoryless, meaning the distribution of the waiting time at time t_{25} is the same as at t_{0}.
\square This means that your exit rate does not change, regardless of how long you've been in each box \square This is often not true!

Assumptions: (4) exponential waiting times

Exponential survival:

Assumptions: (4) exponential waiting times

Exponential survival:

$d N$

$$
\frac{a v}{d t}=-\mu N
$$

- In a simple survival ODE, the 'waiting time' for death to occur is memoryless, meaning that the probability is no different at t_{0}, t_{25}, or t_{75}

Assumptions: (4) exponential waiting times

Exponential survival:

years since birth

- In a simple survival ODE, the 'waiting time' for death to occur is memoryless, meaning that the probability is no different at t_{0}, t_{25}, or t_{75}

Assumptions: (4) exponential waiting times

Exponential survival:

$$
\begin{gathered}
\mathrm{N} \xrightarrow{\mu} \\
\frac{N_{t}}{N_{0}}=e^{-\mu t}
\end{gathered}
$$

- In a simple survival ODE, the 'waiting time' for death to occur is memoryless, meaning that the probability is no different at t_{0}, t_{25}, or t_{75}

Model terminology

- Compartmental models
- Network models
- Individual-based models
\square Continuous time
- Discrete time
\square Deterministic
\square Stochastic

Ordinary Differential Equations (ODEs)

\square Compartmental models

- Network models
- Individual-based models
\square Continuous time
- Discrete time
\square Continuous treatment of individuals
\square Deterministic
\square Stochastic

Ordinary Differential Equations (ODEs)

Characteristics:
A. Continuous treatment of individuals
B. Continuous treatment of time
c. Assumptions:

1. large (infinite) populations
2. well-mixed contacts
3. homogenous individuals
4. exponential waiting times (memory-less)
