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Do we want to sum or 
integrate the area 
under a curve? 

Or just evaluate a 
function at one point? 

P Values 

Likelihoods 
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Let’s zoom in… 
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Where do 
parameters come 

from? 



A priori parameterization 

¨  Use external data to determine values for 
the parameters in your model 

CASCADE 
study 



A priori parameterization 

¨  Use external data to determine values for 
the parameters in your model 
¤ eg, time from seroconversion to death 

 

¨  Plug estimates into models to determine 
expected dynamics 



A priori parameterization 

 
¤  Long-term time series are not available 
¤  Designing a new study 
¤  Data are limited and your goal is to estimate 
a particular quantity that has not been directly 
measured 
¤  Comparing model structures, especially 
when multiple long-term time series are not 
available for validation 
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Fitting models to data 

¨  A priori parameterization 
¤ Use external data to determine values for the 

parameters in your model 
¤ Rarely possible for all model parameters 

¨  Trajectory matching 

¨  Feature matching 
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Deterministic models 

Stochastic models 



Data 



Data n = 3092 



Data 

Observation model 

n = 3092 

€ 

f (x | p) =
n
x
" 

# 
$ 
% 

& 
' px (1− p)n−xPDF: 



Likelihood of prevalence 
(given data) 

Data 

Observation model 

n = 3092 

€ 

L(p | x) = n
x
" 
# 
$ % 
& 
' px (1− p)n−xLIKELIHOOD: 

€ 

f (x | p) =
n
x
" 

# 
$ 
% 

& 
' px (1− p)n−xPDF: 



Data 



Data 

Observation model 

€ 

f (xt | pt ) =
nt
xt
" 
# 
$ 

% 
& 
' pt

xt (1− pt )
nt −xt

t
∏

PDF: 



Likelihood of prevalence 
trajectory (given data) 

Data 

Observation model 

€ 

L(pt | xt ) =
nt
xt
" 
# 
$ 

% 
& 
' pt

xt (1− pt )
nt −xt

t
∏

LIKELIHOOD: 
€ 

f (xt | pt ) =
nt
xt
" 
# 
$ 

% 
& 
' pt

xt (1− pt )
nt −xt

t
∏

PDF: 



Likelihood of parameters 
(given data) 

Data 

Observation model 

Time series 
expectation 

or distribution of  
latent variables 

Process Model 

S 
I 

Parameters 
 

some (possibly) fixed  
and others to be fitted 



Likelihood of the model 
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Why do we fit models 
to data in infectious 

disease 
epidemiology? 
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Koopman et al. 2014. Transmission modeling to enhance surveillance system function. 

Inference Robustness 
Assessment Loop 
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Inference Differs Across 

Parameter Space 

6. Find other types and 
sources of available data 
OR study cost benefit of 
new data collection to 
justify getting new data. 

Koopman et al. 2014. Transmission modeling to enhance surveillance system function. 

Inference 
Identifiability 
Assessment 

Loop 
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•  Assess inference robustness to realistic 
relaxation of simplifying model assumptions 

•  Pursue complexity that matters by keeping 
models as simple as possible but not so simple 
that they lead to an incorrect inference 
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Validate the inference! 
not the model or method you’re working with 
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