

Study Design and Analysis in Epidemiology II: RCT's Lab 4 Summary

Goals

- Simulate data
 - Using a function
- Understanding Type I Error
- Power
- Inference
- Exploring some clinical trial data
 - Generalised Linear Models
- Summary

Generating a simulated data set

Study ID	Treatment	Outcome	
1	1	1.0385574	
2	0	0.4923728	
3	0	1.2503000	
4	1	1.3051281	
17	0	1.0349434	
18	0	1.2704913	
19	1	1.143064	

Function

- Number of subjects : n.Subjects
- Mean :
- Outcome :
- treatment.effect
- Standard deviation :

sd

control.mean

Understanding Type I Error

False positive

Two sample t-test - When p < 0.05, we reject the null hypothesis at a significance level of 0.05.

• Increasing the number of subjects

The type 1 error **does not** change

Power

False negative

The probability of rejecting the null hypothesis when you should reject it

• Increasing the number of subjects

Power **does** change

• Changing the difference between the treatment group and the control group

Lower the treatment effect - the power goes down

Exploring some clinical trial data

Mycotic Ulcer Therapeutic Exploratory Trial

- patient ID
- drug assignment: 0 is natamycin, 1 is voriconazole
- scraping: 0 is no, 1 is yes
- age
- sex
- Perforation: 1 if a perforation happened
- scar size at baseline
- scar size at 3 weeks

Estimate the treatment effect on scar size at 3 weeks.

Estimate the treatment effect on scar size at 3 weeks.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.14922	0.30834	13.457	<2e-16 ***
drug	-0.07211	0.35809	-0.201	0.841
scrape	0.15285	0.35804	0.427	0.670

Summary

- RCTs greatly reduce the chance that confounding is present via randomization of treatment assignment
- RCTs provide us with causal evidence.
- Masking can greatly reduce bias in RCTs. The lack of masking usually leads to inflated estimates of treatment effects
- Oversight reduces exploratory data analysis, preserves the integrity of the research, and protects participants

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by-nc/3.0/

© 2018 International Clinics on Infectious Disease Dynamics and Data

Title: Study Design and Analysis in Epidemiology II: RCT's. Lab4 Summary

Attribution: Faikah Bruce & Travis C. Porco, Clinic on the Meaningful Modeling of Epidemiological Data

Source URL: www.ici3d.org/MMED/tutorials/Lab4 summary.pdf

For further information please contact admin@ici3d.org.

UNIVERSITY OF GEORGIA **College of Public Health**