

Lab 2 Summary

Consequences of Heterogeneity

Roger Ying MMED 2018

Assumptions

- 1. Everyone is the same except for their contact rates, which are gamma distributed
- 2. Disease transmission occurs one at a time (similar to event-driven model from yesterday)
- 3. Disease recovery rate is exponentially distributed

Step 1 – Low variance (homogeneous)

contact rate (1/day)

cumulative # infected (final size)

Beta.mean	2
Beta.var	0.001
Runs	5
Pop.size	100

Step 2 – Increase number of runs

Beta.mean	2
Beta.var	0.001
Runs	50
Pop.size	100

Step 3 – Change variance

outbreak size distribution

2 Beta.mean 0.01 Beta.var 30 Runs Pop.size 100

cumulative # infected (final size)

outbreak size distribution

Beta.mean	2
Beta.var	5
Runs	30
Pop.size	100

cumulative # infected (final size)

time series

Step 4 – Larger population size

outbreak size distribution

Beta.mean	2
Beta.var	0.01
Runs	30
Pop.size	500

cumulative # infected (final size)

outbreak size distribution

Beta.mean	2
Beta.var	5
Runs	30
Pop.size	500

cumulative # infected (final size)

30

20

10

0

0

Frequency

contact rate (1/day)

6

une senes

8 10

Step 5 – Change mean beta \rightarrow 0.7

outbreak size distribution

cumulative # infected (final size)

distribution of average R

8

6

15

10

5

0

0

Frequency

time series

outbreak size distribution

Beta.mean	0.7
Beta.var	10
Runs	30
Pop.size	100

cumulative # infected (final size)

Summary

• Heterogeneous populations have:

500

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by-nc/3.0/

©2018 International Clinics on Infectious Disease Dynamics and Data

Title: Lab 2 Summary: Consequences of Heterogeneity

Attribution: Roger Ying & Steve E. Bellan, Clinic on the Meaningful Modeling of Epidemiological Data

Source URL: http://www.ici3d.org/MMED/tutorials/Lab2 summary.pdf

For further information please contact admin@ici3d.org.

