
000

Estimating probabilities of extinction 
in environments with varying climate

John Hargrove

Using work done in collaboration with:

Jennifer Lord, Glyn Vale, Steve Torr, Damian Kajunguri 
and Ekkehard Kopp



0
0
0

Goals
• To model the effects of increasing temperature on 

populations of tsetse flies, Glossina pallidipes, in 
the Zambezi valley of Zimbabwe

• To develop stochastic models in order to estimate 
the probability that the species will go extinct and, 
if so, when this is likely to happen

• To attempt to develop versions of these models 
that take account of continual changes in 
temperature  
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At Rekomitjie Research Station – from the 1970s until the present 
day – tsetse have been caught, by men armed with hand nets and 
using an ox as bait, to provide flies for bioassay testing of 
insecticides

Each team is provided with about 50 collection tubes, and 
continues collecting each afternoon until all of the tubes are full –
or the team has been out for 3 hours  
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Up until the end of the 1980s it was always the case that 
teams would fill their quota of tubes before the allotted 
sampling time was completed

After 1990, however, it started to become more difficult to 
reach the quota

The downward trend in catches has continued to the present 
day – and accelerated after 2010 4
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The decline in catches comes against a background of increasing 
temperatures 

It looks as if the population is heading for extinction. But is it 
actually going to go extinct?

We have tried to answer this question using modelling approaches
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Tsetse have a much simpler life cycle than most insects
They produce single large pupa at c 9-day intervals:
the pupa gives rise directly to a full-sized adult
This makes modelling population dynamics relatively easy 
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We modelled changes in the numbers of G. pallidipes female 
adults (A) and pupae (P) using two differential equations:

𝑑𝑃

𝑑𝑡
= (𝑇)𝐴 − (𝑇) + 𝑃 𝑃 1

𝑑𝐴

𝑑𝑡
= (𝑇)𝑃(𝑇) − 𝜇𝐴(𝑇)𝐴 2

Pupae produced by adult females (A) at rate ρ, and die 
due to density-dependent mortality, with coefficient , and a 
temperature-dependent mortality, such that a proportion 
 emerge

Adult females die at rate 𝜇𝐴, assumed to be a function of 
temperature
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The model provides a reasonable fit to the catch data from 1990 
onwards – but has problems fitting the very low catch levels 

Would we expect to have problems when trying to fit this type of 
model to very low population levels? If so, what sort of problems?
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The picture above encapsulates all of the processes involved in the 
growth of a population of female tsetse.

Under what circumstances does such a population go extinct?   
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Probability of a population (species) going extinct

A population will go extinct if, and only if, every female 
present in the population at a given time fails to produce even 
a single surviving daughter

So, for the case of tsetse, we start by calculating the 
probability that a given female produces just a single surviving 
daughter at her first pregnancy
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This figure shows how the extinction probability varies with 
adult mortality and (a) pupal mortalities for population n =1: 
(b) populations varying between 1 and 16 with a constant 
pupal mortality of 0.5% per day 12
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Moving forward

• Theoretical results presented above are all published

• Applications to tsetse assume, however, that we know what 
the various parameters are and that they are all fixed

• We could instead consider situations where, for example, 
we know the (mean) temperature profiles and use these to 
estimate the input parameters

• Important because so many things in tsetse biology are 
temperature dependent

• This could give information about where tsetse populations 
could, or could not, exist
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Pupal duration at different constant lab temperatures
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Pupal mortality at different constant lab temperatures
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Adult mortality versus mean screen temperature
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You tell me the temperature:
I’ll give you the extinction probability

• Published work on extinction probability for tsetse has 
proceeded on the basis of calculating extinction 
probabilities given different combinations of input birth and 
mortality parameters

• We are suggesting a step removed where observed 
temperatures are used to estimate the input parameters

There are two problems associated with this approach:
1. Temperatures are not constant over life of the fly

2. Measured temperatures will seldom reflect the    
temperature being experience by the flies

• This will make the calculation of extinction probabilities 
much more difficult 
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There are three aspects to the problem: (i) Even during the production of a 
single offspring the temperature will be changing (ii) The temperature regimes 
experienced during the production of successive offspring will be quite different 
(iii) The temperatures we measure in a Stevenson screen often bears little 
relation to the temperatures being experienced by a tsetse fly 18
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The importance of 
extreme events in 
for population 
dynamics 
demonstrated  by 
looking at Rekomitjie 
trap catches during 
the 1990s

In Oct/Nov 1992 the 
20-day running 
mean of maximum 
temperature 
approached 400C –
for the first time 
since records began 
– and trap catches 
fell by >90% in a 
single month
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When temperatures exceed 320C tsetse seek out dark places, 
which are cool. Artificial “refuges“ can be used to sample 
large numbers of flies in the hot dry season
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In the hot dry season tsetse deposit their larvae in burrows. 
Artificial warthog burrows can be used to collect pupae – and 
also to capture females as they are about to larviposit  
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The day-time temperatures in “refuges” are much lower than 
ambient – and temperatures in burrows are even lower

Night-time temperatures in the burrows are slightly higher 
than ambient, and in “refuges”
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Summary
• When modelling the dynamics of biological populations 

close to zero we need to consider stochastic processes 
treating individuals, and time, as discrete units

• We consider the general theory pertaining to branching 
processes, applying results to the particular case of tsetse

• So far such work has been restricted to situations where 
birth and death rates have been assumed constant 

• We need to consider situations where conditions, 
particularly temperature, change with time – even during 
the life of individual flies

• For the simple situation closed form solutions are possible: 
it may be necessary to use numerical methods to solve the 
more general case  
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