Use of models in study design for dynamic systems: Ebola vaccine trial design

Steven Bellan, PhD, MPH Dept. of Epidemiology & Biostatistics, College of Public Health University of Georgia

> DAIDD Tuesday December 6, 2016 White Oak Conservation

The West African Ebola Epidemic

- What processes drive the epidemic?
- Who is at highest risk?
- When will it peak/end?
- Which interventions work?
- Optimal allocation of sparse resources?

Infectious Disease Research

Logistical, financial and ethical constraints limit quantity & quality of data

Perspectives from Two Disciplines

Classical Epidemiology

Data-Centric

(Public Health)

Risk Factors

Biostatistics

Mechanistic Epidemiology

Process-Centric

(Disease Ecology)

Infectious Disease Dynamics

Mathematical Modeling

• Does A cause B?

- Does literacy cause HIV?
- HIV infected Individual Literate 1 0 0 0 2 0 3 0 0 0 5 1 6 0 8

HIV prevalence 3X greater amongst literate

- Find correlations that imply causality by accounting for
 - 1. random error: do we have enough data?
 - 2. bias: are design & analysis valid?

Infer causation via carefully identified correlations

Minimize bias via:

• study design: e.g. randomization, blinding

• analytical methods: e.g. causal inference modeling

What do Introductory Epidemiology courses teach?

- Measures of Disease
- Measures of Effect (of a risk factor)
- Study Designs for Measuring Effects
 - Dealing with random error
 - Dealing with confounding
 - Dealing with bias
- Biostatistical analyses for analyzing data

Scale up from individual processes to population patterns

solid arrow = flow between disease states dashed arrow = influence

How do contact processes cause epidemics?

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation

What if each person exposed 50% more people?

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation

What if we treated people and doubled the rate of recovery?

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation
- Estimating parameters by fitting available data

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation
- Estimating parameters by fitting available data

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation
- Estimating parameters by fitting available data

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation
- Estimating parameters by fitting available data

Estimate transmission rate or other model parameters (with confidence intervals)

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation
- Estimating parameters by fitting available data
- Prediction

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation
- Estimating parameters by fitting available data
- Prediction
- Model selection (choosing between alternative hypotheses)

- Scale up from individual processes to population patterns
- "What if" scenarios not amenable to experimentation
- Estimating parameters by fitting available data⁻
- Prediction
- Model selection

Data-Centric

Individual	Literate	HIV infected	Age	SES
1	0	0	5	high
2	0	0	8	high
3	0	0	7	low
4	0	1	16	low
5	1	1	35	low
6	1	0	28	high
7	1	1	18	low
8	1	1	45	high

Mechanistic Epidemiology

Process-Centric

An Integrative Approach

Mechanistically model both <u>observation processes</u> & underlying <u>epidemiological processes</u>

Vaccine Efficacy Trials

- Compare disease risk between vaccinated & unvaccinated participants.
- If high risk people choose to be vaccinated, confounding
- Confounding avoided by randomization
- Randomized double-blinded placebo-controlled trials

Is randomization ethical?

- You are a HCW in Sierra Leone, many colleagues have died of Ebola.
- A vaccine appears safe and promising.
- Would you want to be randomized to placebo?

Equipoise

Uncertainty regarding whether a participant is better off receiving intervention or placebo.

- Evaluate vaccine when ethically problematic to withhold intervention
- Vaccinate everyone as fast as possible, by groups, in random group-order

- Compare infection risk between vaccinated & not-yet-vaccinated individuals
- Randomized group-order avoids confounding

Clusters from geographically distinct areas

Vaccinate one cluster each week

Everyone vaccinated to avoid equipoise dilemma

Vaccinate one cluster each week

Everyone vaccinated (no equipoise issues)

Compare # infections between vaccinated & not-yet-vaccinated

Vaccinate one cluster each week

Everyone vaccinated (no equipoise issues)

Compare # infections between vaccinated & not-yet-vaccinated

infected participant

Nov 2014: To avoid equipoise dilemma CDC proposed this design.

Jan 2014: Uncertain about SWCT given declining incidence.

Offered quantitative assessment.

Regional Variation in Ebola Cases

Other Options

Vaccinate half of each cluster immediately.

Compare arms in same clusters.

Not logistically feasible.

Other Options

Vaccinate half of each cluster 1 week at a time.

Compare arms in same clusters.

Other Options

Vaccinate half of each cluster 1 week at a time.

Compare arms in same clusters.

Prioritize high risk clusters.

Exponential decay models fit to district-level incidence

Exponential decay models fit to district-level incidence

Stochastic models simulate random fluctuations in cases

Then, assume 5% of all cases occur in health care workers. Faye et al. 2015. *Lancet Inf Dis*.

Then, assume 5% of all cases occur in health care workers. Faye et al. 2015. *Lancet Inf Dis*.

Then, assume 5% of all cases occur in health care workers. Faye et al. 2015. *Lancet Inf Dis*.

Example 100 cases in a district in March → 5 cases in HCW If there are 5 HCW cases/500 HCW = 0.01 risk per month

Modeling Ebola Risk

HCW risk varies by district

Modeling Ebola Risk

HCW risk varies by district and individually

Evaluating Trial Designs

- 1. Fit epidemic declines with decay model.
- 2. Simulate stochastic epidemic projections
- 3. Simulate trial population with risk determined by projections.
- 4. Simulate vaccine trial design.
- 5. Analyze data.

× 2000 for each scenario

False Positive Rate

If vaccine is *not* efficacious, % times we conclude it is efficacious

Statistical Power

If vaccine is efficacious, % times we conclude it is efficacious

False Positive Rates

% of district-level cases in trial population

Statistical Power

SWCT has < 15% power of detecting an efficacious vaccine.

Very inefficient for spatiotemporally variable settings

Risk-prioritized RCT far more statistically powerful in this context.

Speed is a Priority!

What about ethics?

Avoids Equipoise Concern

- 1. No control groups
- 2. Vaccinate everyone as fast as possible

(no prioritization of information over outcomes)

But high risk people should be vaccinated first...

What about ethics?

Avoids Equipoise Concern

- 1. No control groups
- 2. Vaccinate everyone as fast as possible

(no prioritization of information over outcomes)

But high risk people should be vaccinated first...

Informed by our analysis, CDC did a risk-prioritized RCT.

Vaccinated everyone at the end.

risk-prioritized RCT

Computational Resources

- 600,000 simulated trials (2K for 300 scenarios)
- 480 million statistical models fit

• 2 days on TX Advanced Computing Cluster

• Total analysis done in 3 weeks

Interactions with CDC

- Dialogue/collaboration with CDC Modelers (Lopman, Gambhir)
- Results discussed in CDC Vaccine Team Meetings

CDC already leaning towards phased-RCT due to adaptability in declining epidemic context

- Results were influential in helping CDC think through new design
- Ongoing CDC STRIVE began April 14th

Integrative Approach

process-centric

data-centric

24

Philosophy of Modeling & Trial Design

Rigorous insight into designs

Fast

Idealized, not applicable to real world scenarios

Complexity aimed at capturing realism

Challenging to understand how assumptions influence results

Acknowledgements

- Lauren Ancel Meyers, Jonathan Dushoff, Juliet Pulliam, Carl Pearson, Alison Galvani, Manoj Gambhir, Ben Lopman, Travis Porco, David Champredon, Spencer Fox, Laura Skrip
- International Clinics on Infectious Disease Dynamics and Data (ICI3D)
- GA Tech Conference: Modeling the Spread & Control of Ebola in W Africa

Models of Infectious Disease Agent Study

> Funded by the National Institutes of Health

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by-nc/3.0/

© 2010, 2015-2016 Steve Bellan and the International Clinics on Infectious Disease Dynamics and Data

Title: Use of models in study design for dynamic systems: Ebola vaccine trial design Attribution: Steve Bellan, Clinic on Dynamical Approaches to Infectious Disease Data For further information please contact Steve Bellan (steve.bellan@uga.edu).

