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Are these different?

Measles Outbreaks

5 Urban Villages 5 Rural Villages
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Classical Epidemiology

Individual Literate HIV infected

e Does literacy cause HIV?

= = = =2, 0 000

1
2
3
4
5
6
7
8

e Find correlations that
imply causality by accounting for

1. random error: do we have enough data?
2. bias: are design & analysis valid?
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Mechanistic Epidemiology

e Scale up from individual processes to population patterns

 “What if” scenarios not amenable to experimentation

transmission recovery

& Susceptible
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€ Recovered




Mechanistic Epidemiology

e Scale up from individual processes to population patterns

 “What if” scenarios not amenable to experimentation

What if each person exposed 50% more people?

transmission recovery

& ) Susceptible
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Mechanistic Epidemiology

e Scale up from individual processes to population patterns

 “What if” scenarios not amenable to experimentation

What if we treated people and doubled the rate of recovery?

transmission recovery

& ) Susceptible

@ Infectious

) Recovered




Mechanistic Epidemiology

e Scale up from individual processes to population patterns
 “What if” scenarios not amenable to experimentation

* Estimating parameters by fitting available data
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Mechanistic Epidemiology

e Scale up from individual processes to population patterns
 “What if” scenarios not amenable to experimentation

* Estimating parameters by fitting available data

Estimate transmission rate or other model parameters
(with confidence intervals)
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transmission recovery
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(:} Infectious

) Recovered
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Mechanistic Epidemiology

Scale up from individual processes to population patterns
“What if” scenarios not amenable to experimentation
Estimating parameters by fitting available data

Prediction

transmission recovery

& ) Susceptible

@ Infectious

) Recovered

13



Mechanistic Epidemiology

Scale up from individual processes to population patterns
“What if” scenarios not amenable to experimentation
Estimating parameters by fitting available data

Prediction

Model selection (choosing between alternative hypotheses)

; Model 1
S _’I y— R # people

intervention

Model 2

“4; A ”‘ N
g4 End
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Mechanistic Epidemiology

Scale up from individual processes to population patterns
“What if” scenarios not amenable to experimentation

Estimating parameters by fitting available data™)
data focus

Prediction »emerged in
last 10 years

Model selection

: Model 1
i AL y
By —> @ —

intervention

Model 2

@ ¢
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Why fit models to data?

Estimate quantities/parameters of interest
Inference: Test hypotheses

Model assessment:
Assess plausibility or model comparison

End goal: explain observed patterns or predict

17



Statistical Models

A familiar starting point e

Analogous to fitting dynamical models

Abstraction of real relationships

Explaining variation in data through
correlational relationships (hopefully causal)
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Dynamic Models and Time Series Data

Dynamic models evolve through time

and simulate time series

Informally compare observed time series &
simulated time series

Fitting models to data formally compares them
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Linear Regression

How does hook worm burden
affect blood loss?

80
I

60
I

Is there any relationship?

daily blood loss (mg/day)

I I I I
0 500 1000 1500 2000

hook worm burden

Data in Epicalc R Library taken from Areekul et al. (1970). 21



Linear Regression
Null hypothesis: No relationship

®) i A
Y=a > © |Y,=a=33 °
E o
g; °
. : 2 o _ ° ~

s this a good fit? Té Yle %
S 2 e

How can we get a better > . o

fit, or the best fit? S | | | |

0 S10[0) 1000 1500 2000

hook worm burden
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Linear Regression
Null hypothesis: No relationship

Y=o+ ¢ T\é, ® Y. =a=33 o

~— Q@ — residuals
% |
o

Is this a good fit? g ¥ Nl
S =4

How can we get a better >

fit, or the best fit? 3 | | | |

0) 500 1000 1500 2{0[0]0]

.. _— hook worm burden
One option is Least Squares Fitting

Choose a line Y = a + BX to minimize >(residuals)?
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Linear Regression
Null hypothesis: No relationship

>
g 5. ' 1
Y.=a+BX+¢e >
=
~ Q - residuals
5 3l
. : - o _| °
Is this a good fit? E %
S =14
How can we get a better > { ﬂ
fit, or the best fit? S | | | |
0 500 1000 1500 2000

.. _— hook worm burden
One option is Least Squares Fitting

Choose a line Y = a + BX to minimize >(residuals)?
24



hook worm

expected daily burden LI near Regress 10N

blood loss
L
X

BN
3 o ! |
S -
~ o _ residuals
©
| 2 ’
intercept = o _ ¢ l
P error 3 N %
effect of hook % Q - I
worm burden ~ ﬂ
= °
yo] | | | |

0 500 1000 1500 2000

.. _— hook worm burden
One option is Least Squares Fitting

Choose a line Y = a + BX to minimize 3(&,)?
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Linear Regression

Another option is
Maximum Likelihood

BN

S 8- | :

o)
YI =Q + BXI + EI é S - residuals

= !

o - s, :
EiNN(O; 0-2) % Q- J

z |

o | | | '

0) 500 1000 1500 2{00]0
hook worm burden
AN AN OA . . . .
Choose a, B, o to maximize the likelihood

i.e. probability of observed data given a model e



Linear Regression

Maximum Likelihood

60

40

daily blood loss (mg/day)
20

0 500 1000 1500 2000

hook worm burden

Choose &, B, o to maximize the likelihood

i.e. probability of observed data given a model ,



probability density

Linear Regression

I l
/l

Maximum Likelihood

Yi - N(a + Bxi; 02)

40 60 80
I I

ly Ylood loss (mg/day)
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\
=
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probability density

Linear Regression

Maximum Likelihood

Yi - N(a + Bxi; 02)

|
e —

l
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20 40 60 80

I
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daily blood loss (mg/day)

500 1000 1500 2000
/k /\ /\ hook worm burden
0 20 0 20 0 20
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Maximum Likelihood

function of data

e

PDF:

LIKELIHOOD:

=

function of parameters

Linear Regression

daily blood loss (mg/day)

40 60 80

20

500 1000 1500

hook worm burden
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Linear Regression

Parameter Estimation
& Inference

| |
— o
o\

daily blood loss (mg/day)
20 40 60 80
|
@
4.
-

|
C
[ =

NUII hypOtheSiS: B = O 0 500 1000 1500 2000

hook worm burden

B=0.04
P(estimating a B this extreme |null) Confidence intervals

P = 6.99e-05 < 0.05, Collection of
non-rejectable null hypotheses

so we reject the null hypothesis.

A

B = 0.04(0.025, 0.056)
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frequency

Isita good model: = .-

Checking Assumptions

Normality

?

> 3 o

O N ®

O

© o

Al _'. ¢
1 T 1 T 1 | | | |

0O 10 30 20 40 60 80
residuals fitted
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s it a good model: ' ..

Checking Assumptions ===-
Linearity Independence Constant Variance
o _ o
(4P
D a
S
T ; ® ®
| | | | |
0 500 1500

worm burden ”



Is it a good model: i

Goodness of Fit 1
14 R2=0.72

0 500 1000 1500 2000

daily blood loss (mg/day)
20 40 60 80

hook worm burden

R? = (correlation coefficient)?

How much of the variationin Y is
explained by the model?
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s it a good model:
Goodness of Fit P rEES

Chi Squared
Goodness of Fit Test

>
=
[}
c
()
©
>
=
o]
©
Qo
(]
—
o

1 <o (Observed, — Expected.)’

2
X =—
n-1< o’

e Does the observed data differ significantly from our model?
e |f not, then we cannot reject our model as a bad model.

e But we cannot accept our model (the null hypothesis) !
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Isita good model: = .-
Goodness of Fit e

Likelihood Ratio Test (G test, Analysis of Deviance, ANOVA)

>
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o

Under the null hypothesis:

LMLE

LNull

2
~ X df = difference in # of parameters

2log
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Isita good model: = .-
Model Selection o

Likelihood Ratio Test (G test, Analysis of Deviance, ANOVA)

>
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>
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©
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o

Under the null hypothesis:

more parameters

L

less parameters

2
~ X df = difference in # of parameters

2log
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Is it a good model:

Model Selection

Akaike’s Information Criterion (AIC)

AIC = -2log(L) + 2(# of parameters)
\ )
l

penalty for adding parameters

Rank proposed models by AIC: lowest is best.

All models within 2 of lowest should be considered.

oooooooooooooo

38




Overfitting

You can always fit N data points with N
parameters.

How many is too many?
Bias/Variance Tradeoff

AIC, Cross-validation

39



Collinearity

* Independent variables that vary with each
other

Non-ldentifiability

 Multiple parameter sets fit about equally well
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What did we just do?

Asked a question about a relationship Ef f l

3 | '

2 o * l

T T %
Made some observations (data) S & Iﬂ

TE I‘ I I I
Formulated the relationship into a model hook worm burden
Fitted the model to data ~ TR
Assessed model fit/quality (model selection) 60

Inference/parameter estimation

Improved our understanding of the world
41
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probability

In a population of 1,000,000 people with a true prevalence of 30%, the
probability distribution of number of positive individuals if 100 are

sampled:

100
Fo=( ) 307100

0.00 - l = - | |
0) 10 20 0) 40 50 60

number HIV+

We sample 100 people once and 28 are positive:

> rbinom(n = 1, size = 100, prob = .3)
[1] 28

70 80 90 100
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probability

Introduction to Likelihood

hypothetical prevalence: 30 %

0.10 ~

0.05 +

OOO - [ | [ [ [ | [ [ [ [
0 10 20 30 40 50 60 70 80 90
number HIV+

We sample 100 people once and 28 are positive:

> rbinom(n = 1, size = 100, prob = .3)
[1] 28

100
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probability

0.10 ~

0.05 +

0.00 -

hypothetical prevalence: 15 %

10

20

30 40 50 60 70
number HIV+

80

90

100
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probability

0.10 ~

0.05 +

0.00 -

hypothetical prevalence: 20 %
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20

30 40 50 60 70
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80

90

100
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probability

0.10 ~

0.05 +

0.00 -

hypothetical prevalence: 25 %
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probability

0.10 ~

0.05 +

0.00 -

hypothetical prevalence: 30 %
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probability

0.10 ~

0.05 +

0.00 -

hypothetical prevalence: 35 %
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number HIV+

80
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100
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probability

0.10 ~

0.05 +

0.00 -

hypothetical prevalence: 40 %

10

20

30 40 50 60 70
number HIV+

80

90

100
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Which prevalence gives the greatest probability
of observing exactly 28/1007?

hypothetical hypothetical hypothetical

prevalence: 15 % prevalence: 20 % prevalence: 25 %
> | | i
1: |||||||||||||||||||||||||||||||||
Q
8 hypothetical hypothetical hypothetical
e prevalence: 30 % prevalence: 35 % prevalence: 40 %
o

number HIV+ 51



Which of these prevalence values is most likely
given our data?

hypothetical hypothetical hypothetical

prevalence: 15 % prevalence: 20 % prevalence: 25 %
> ]
: I I I T T T T T T T 1 I I I I T T T T T T 1 I T I I T T T T T T 1
Q
8 hypothetical hypothetical hypothetical
e prevalence: 30 % prevalence: 35 % prevalence: 40 %
o

number HIV+ 52



likelihood

0.08

0.06

0.04

0.02

0.00

p(our data given prevalence) = LIKELIHOOD

"

Maximum Likelihood Estimate
parameter value giving greatest probability
of the data having occurred.

What do you think is the MLE here?
MLE = 28/100 = 0.28

0.0

true unknown value = 0.30

0.2 0.4 0.6 0.8 1.0

hypothetical prevalence

\ J

different null hypotheses c3



Defining Likelihood

* |(parameter | data) = p(data | parameter)

* Nota probability function of x
distribution. l ,
PoF: f(xlp) = () )*(1 —p)

* Probabilities
taken from many
n
X

different LIKELIHOOD: L(p|x) = ( )(p)x(l — p) ¥
distributions. !

function of p =i



Deriving the Maximum Likelihood Estimate

maximize E
L) = () @)@ —p)n™
X hypothetical prevalence
maximize ’zg
I 2
[ \ =
n X
_ X(1 _ . \N—X =
log(L(@) =log|( ) @*a-p"*] F I
hypothetical prevalence
minimize g
[(p) = —log [(n) (0)*(1 - p)"‘x] %»
X T

hypothetical prevalence
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likelihood

0.08

0.06

0.04

0.02

0.00

Likelihood

"

Maximum Likelihood Estimate

L X 28 — 003
P="100

0.0

0.2 0.4 0.6 0.8 1.0

hypothetical prevalence
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likelihood

—log(likelihood)

hypothetical prevalence

we usually minimize the —log(likelihood)

400 - Maximum Likelihood Estimate
X 28

£ =—=—=10.28

P = T 100
200 -
100 -

O - [ I I I I ]
0.0 0.2 0.4 0.6 0.8

hypothetical prevalence

1.0
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Building Confidence Intervals
Likelihood Ratio Test

If the null hypothesis were true then 7 PDF fory.,

(L(alternative hypothesis)) 5
05 L(null hypothesis) Xaf=1

probability density
00 1.0 2.0 3.0

Why does this work? 0 1 2 3 a4

» Adding irrelevant parameters
always improves the fit.

 How much should fit improve due to chance alone by adding
an irrelevant parameter?

- Fitimprovement, as measured above, is approximately x4
distributed with df = to the difference in parameters used to fit.
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Building Confidence Intervals
Likelihood Ratio Test

If the null hypothesis were true then 7 PDF fory.,

(L(alternative hypothesis)) 5
o5 L(null hypothesis) Xaf=1

probability density
00 1.0 2.0 3.0

2log(Lmrg) — 210g(Lnun) ~Xdf=1

y)
—2lyre + 2ln~Xar=1
So if our a = .05, then we reject any null hypothesis for which

—2lyre + 2L > ¥2. . . =3.84 >qchisq(p=.95, df = 1)
MLE null de 1,a=.05 1] 3.841459

If log(L —log(L,,;)> 1.92,
Lpwin — Lyg > 1.92 9(Lwsie) a(L,un)

we reject that null hypothesis. <4



—log(likelihood)

Building Confidence Intervals
Likelihood Ratio Test

we usually minimize the —log(likelihood)

Maximum Likelihood Estimate

Z10]0)

0.0 0.2 0.4 0.6 0.8 1.0

hypothetical prevalence
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—log(likelihood)

Building Confidence Intervals
Likelihood Ratio Test

Maximum Likelihood Estimate

6 - . x 28 _ 098
P =" 100
S Y
2_ [ [ [ [ [ |
0.0 0.2 0.4 0.6 0.8 1.0

hypothetical prevalence
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—log(likelihood)

Building Confidence Intervals
Likelihood Ratio Test

6 _
______________ S
4 -
1.92
2 - [ I I I I 1
0.0 0.2 0.4 0.6 0.8

hypothetical prevalence
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—log(likelihood)

Building Confidence Intervals
Likelihood Ratio Test

95% Cl includes HIV prevalences of 19.9% to 37.2%

6_
.. .099 0872 .
4_
2_ [ I I I I 1
0.0 0.2 0.4 0.6 0.8

hypothetical prevalence
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Statistical Models

Account for bias and
random error to find
correlations that may imply
causality.

Often the first step to
assessing relationships.

Assume independence of
individuals (at some
scale).

&

Dynamic Models

|
e Systems Approach:

Explicitly model multiple
mechanisms to understand
their interactions.

Links observed
relationships at different
scales.

Explicitly focuses on
dependence of individuals

By developing dynamic models in a probabilistic framework we
can account for dependence, random error, and bias while
linking patterns at multiple scales.
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Fitting Dynamic Models to Data

Adapt our dynamic models in a probabilistic
framework so we can ask:

What is the probability that a model would have
generated the observed data?

What is the likelihood of a model given the data?

66
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Binomial Distribution
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Normal Distribution
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Exponential Distribution
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Poisson Distribution

71



Stochastic Component of Model

Binomial Distribution

72



HIV in Hara:/

Binomial

<

Data >
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HIV in Hara:/

Normal

<

Data >
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Stochastic Component
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Deterministic Component

/ of Model




Deterministic Component

/ of Model







Collinearity

* Independent variables that vary with each
other

Non-ldentifiability
 Multiple parameter sets fit about equally well

* Can be informative in dynamic models

79



Rakai Retrospective Couples Cohort

7x as infectious for first 5 month
26x as infectious for first 3 months

EHM =300r /0

acute

0 10
months of follow-up
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Comparing Results

81



Collinearity in Fitted Parameters

Holl. 2008: RHacute= 26' dacute= 2.9
B

10 100
RHacute

Revisit original data & method.



Collinearity in Fitted Parameters

Holl. 2008: RHacute= 26' dacute= 2.9
B

@ ourrefit: RH, =42, d 1.5

acute acute —

10 100
RHacute

Refit the same model using Bayesian MCMC




Collinearity in Fitted Parameters

Holl. 2008
|

@ our refit

95% CI

10 100
RHacute

Refit the same model using Bayesian MCMC



Collinearity in Fitted Parameters

Data are consistent with both
e shorter, highly infectious

e |onger, less infectious
acute phases

95% CI

10 100
RHacute

Refit the same model using Bayesian MCMC




Collinearity in Fitted Parameters

What is actually

ldentifiable?
I RHacute = 26 for 3 months — Excess Hazard-Months
acute chronic late AIDS [e[V[ER{E-IANI(=Ne 4N
EHM__ 1o = (RH 1o~ 1)d, e
EHM, .. = 25*3 = 75
EHM =15*5=75

acute

T T T T T T T T T
001 2 3 4 5 6 7 8 9 10 [CUSTEGELEYE

years since infection
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Excess Hazard Months (EHM

acute)

chronic late AIDS

95% ClI

I I I I I I I I I
R T T i
2 3 4 5 6 7 8 9 10 10 100

years since infection RHacute




Excess Hazard Months (EHM

acute)

EAMacute

109
104
103
500

200
100

70
50
25

chronic late AIDS

O 1 2 3 4 5 6 7 8 9 10
years since infection

RH, . andd, .. are not identifiable from 10-month interval cohorts

We should focus on EHM

acute
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Formally vs Informally Fitting

* Recently, fitting models to data expected

 Unnecessary for demonstration of qualitative
dynamics

* Necessary for
parameter estimation
inference
formal model comparison
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Learning More: Methods for Fitting

* Least Squares

* Frequentist Maximum Likelihood Fitting

e Bayesian Posterior Estimation (usually MCMC)
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Simulating to test methods

e Create model
 Simulate data

e Can you estimate the inputted parameters for
the simulation by fitting?
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Simulating to test methods

5 Urban Villages 5 Rural Villages

12

—— Susceptible Susceptible
— Infected Infected

Recovered Recovered
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Summary

* Why we fit
parameter estimation

inference !.

formal model comparison D

“
e How we fit

Create a probabilistic framework that links
our model to data—ie, write a likelihood

* What to consider when fitting
Assumptions Goodness of fit
Overfitting ldentifiability
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